Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy.

نویسندگان

  • Y Zou
  • Y Hiroi
  • H Uozumi
  • E Takimoto
  • H Toko
  • W Zhu
  • S Kudoh
  • M Mizukami
  • M Shimoyama
  • F Shibasaki
  • R Nagai
  • Y Yazaki
  • I Komuro
چکیده

BACKGROUND Although activation of the Ca(2+)-dependent phosphatase calcineurin has been reported to induce cardiomyocyte hypertrophy, whether calcineurin is involved in pressure overload-induced cardiac hypertrophy remains controversial. METHODS AND RESULTS We examined in the present study the role of calcineurin in pressure overload-induced cardiac hypertrophy using transgenic mice that overexpress the dominant negative mutant of calcineurin specifically in the heart. There were no significant differences in body weight, blood pressure, heart rate, heart weight, and the cardiac calcineurin activity between the transgenic mice and their littermate wild-type mice at basal state. The activity of calcineurin was markedly increased by pressure overload produced by constriction of the abdominal aorta in the heart of wild-type mice but less increased in the heart of the transgenic mice. Pressure overload induced increases in heart weight, wall thickness of the left ventricle, and diameter of cardiomyocytes; reprogramming of expressions of immediate early response genes and fetal-type genes; activation of extracellular signal-regulated protein kinases; and fibrosis. All these hypertrophic responses were more prominent in the wild-type mice than in the transgenic mice. CONCLUSIONS These results suggest that calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy.

BACKGROUND Cardiac hypertrophy is a fundamental adaptive response to hemodynamic overload; how mechanical load induces cardiac hypertrophy, however, remains elusive. It was recently reported that activation of a calcium-dependent phosphatase, calcineurin, induces cardiac hypertrophy. In the present study, we examined whether calcineurin plays a critical role in pressure overload-induced cardiac...

متن کامل

Cardiac-Specific EPI64C Blunts Pressure Overload-Induced Cardiac Hypertrophy.

The calcium-responsive molecule, calcineurin, has been well characterized to play a causal role in pathological cardiac hypertrophy over the past decade. However, the intrinsic negative regulation of calcineurin signaling during the progression of cardiomyocyte hypertrophy remains enigmatic. Herein, we explored the role of EPI64C, a dual inhibitor of both Ras and calcineurin signaling during T-...

متن کامل

Channel Is Required for Pressure Overload–Induced Cardiac Hypertrophy in Mice

Voltage-gated T-type Ca channels (T-channels) are normally expressed during embryonic development in ventricular myocytes but are undetectable in adult ventricular myocytes. Interestingly, T-channels are reexpressed in hypertrophied or failing hearts. It is unclear whether T-channels play a role in the pathogenesis of cardiomyopathy and what the mechanism might be. Here we show that the 1H volt...

متن کامل

[Calcineurin inhibitor attenuates the development and induces the regression of cardiac hypertrophy in rats with salt-sensitive hypertension].

BACKGROUND It remains unclear how hemodynamic overload induces cardiac hypertrophy. Recently, activation of calcium-dependent phosphatase, calcineurin, has been elucidated to induce cardiac hypertrophy. In the present study, we examined the role of calcineurin in load-induced cardiac hypertrophy by using Dahl salt-sensitive (DS) rats, which develop both pressure and volume overload when fed a h...

متن کامل

Dynamic changes of hemodynamic parameters and cardiac transcription of sirtuins in adaptive and mal-adaptive phases of pressure overload-induced hypertrophy in rats

Introduction: The aim of the study was to investigate the structural and hemodynamic changes as well as cardiac transcriptional profile of the key regulatory proteins, sirtuins family (SIRT1-7), in adaptive and mal-adaptive phases of left ventricular hypertrophy (LVH). Methods: LVH was induced in male Wistar rats (190±20g) by abdominal aortic banding. The third and sixteenth weeks post-surgery ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 2001